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The analyticity of all strata of the Pirogov Sinai phase diagram is proved. As a 
byproduct of the method, a characterization of typical volumes for which 
the complex partition function vanishes is given, for a Hamiltonian that is a 
perturbation of the real-valued one, near the point of a phase transition. 
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1. I N T R O D U C T I O N  

The aim of this paper is to present a method enabling one to prove the 
analyticity of all the strata of the Pirogov Sinai phase diagram. The models 
we study are the discrete spin models of the Pirogov-Sinai theory (1) and 
our approach is based on Ref. 2. 

We start with a few comments on the relation between this paper and 
related work(3'4): While Ref. 4 uses some ideas not very different from ours, 
it has a distinguishing feature--the use of the block spin techniques. That 
work and the present paper were developed independently. 

The first proof of analyticity of the diagram is due to Basuev. (3) His 
method, based on the use of Mayer-type expansions (as developed in his 
earlier papers), is different from ours and this stimulated us to write down 
our proof (announced in Ref. 2). Moreover, we expect that our method 
also will work without any substantial changes in the case of continuum 
spin models. The supplementary technique needed to control the con- 
tinuum spin models is developed in detail in Ref. 5. (It also can be used to 
study interfaces. (6)) We do not formulate it here, nor do we formulate any 
analyticity properties of the interface diagram in Ref. 7. [Since the v-dimen- 
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sional interface problem is formulated in Ref. 7 in terms of the problem of 
characterization of the translation-invariant phases of some auxiliary 
(v-1) -d imensional  Pirogov-Sinai (PS) situation, our results here can be 
applied to Ref. 7.] 

The characteristic feature of Ref. 2 and our approach here is the 
notion of "small" and "large" contours used to distinguish between the 
"stable" and "possibly unstable" behaviour of the system. Under "stable" 
boundary conditions, all contours are "small." "Large" contours may 
appear under "unstable" boundary conditions (for large volumes only); 
they are defined as boundaries of the large droplets of stable phase (which 
"tend to appear inevitably" in those large volumes). 

The problems one has to tackle in the PS theory when going to the 
complex Hamiltonians can be characterized as follows. One has to 
generalize the following two kinds of arguments: 

(i) The technique of contour models (developed primarily for the 
description of the coexisting "stable" phases; some cluster expansions of the 
partition functions of the contour models are needed here. 

(ii) The inequalities controlling the behavior of partition functions of 
the "nonstable phases" compared to the stable ones. These inequalities are 
also based on (i) but require some additional considerations. 

It is instructive to notice that the problem is not in the cluster expan- 
sions (they work also in the complex case), but in the estimates (ii). 
Namely, some estimates from below (especially of the partition functions 
corresponding to "nonstable phases") deteriorate as the terms forming the 
partition functions are no longer positive! Thus, our strategy is to adapt 
the method of Ref. 2 avoiding or modifying the estimates from below of the 
complex partition functions. 

This is related to the question of zeros of the partition functions. That 
they do appear is a trivial consequence of the very existence of phase trans- 
itions. Here we obtain, as a byproduct of our method, some bounds on the 
localization of the zeros "nearest to the real axis." Moreover, we explain 
the very "mechanism" of the phenomenon, finding (with a good accuracy) 
for a given complex Hamiltonian a "critical" volume A such that Z(A)  = O. 
This is formulated in Theorem 2, for the "diluted" partition functions. 
Roughly speaking, e.g., for the Ising model with an external field h > 0, the 
"diluted" partition function Z §  corresponding to the ( + )  boundary 
condition attains the value 0 for a suitable set (almost a cube) A of the size 
Ch -1, assuming that the external field changes to h + C'Th v (T  is the tem- 
perature) for a suitable complex C'. This will be shown to be closely related 
to the phenomenon that A is a "critical" set in the following sense: For 
some other value of the field h + C"hv, C" real, the configurations in A con- 
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taining a large droplet of the ( - )  phase tend to prevail in their 
contribution to Z+(A) compared to the contribution of all "metastable 
configurations persisting in the + regime." 

These results show the special role of the periodic, resp. empty, 
boundary conditions in the Lee-Yang theorem (where zeros appear only 
for Re h = 0). 

Theorem 2 also complements our main result, Theorem 1, by showing 
the limits of what can be proved by this method. (Concerning the non- 
existence of the analytic continuation of the thermodynamic quantities 
outside the given strata of the phase diagram, one has to refer to the deep 
and valuable Isakov method./9)) 

Theorem 1 of the present paper was announced in Ref. 10. Here, we 
prove it in Section 2.2. First, in Section 2.1, we briefly recapitulate the 
setting of the problem and the basic method of Ref. 2. This is done for the 
convenience of the reader. At the same time, it enables us to introduce one 
important modification of the strategy of Ref. 2: The notion of a small con- 
tour depends on the Hamiltonian in Ref. 2. In order to guarantee the con- 
tinuity of various quantities such as the free energies of the "metastable" 
models, the notion of a "truncated" functional max(F(F),  �89 Isupp F[) was 
introduced in Ref. 2. It is clear that such an operation is not reasonable 
when the proof of analyticity is required. 

Here, we adopt the following strategy. Starting with some real 
Hamiltonian H(.~o), we define the notion of a small contour as in Ref. 2, 
strengthen it further a little bit for the contours with "unstable" exterior 
(excluding contours with too large length), and then fix this notion in 
some neighborhood of )~o. Quantities such as sq in Ref. 2 are now defined 
as the free energies of the contour models admitting small contours only. 
With these modifications, Refs. 2 and 7 can be consulted for more details 
and some related information. 

The limitation of our method (as compared to Ref. 4) is that it works 
only "near the real axis," assuming that the complex Hamiltonian is a small 
perturbation of a real one. (Only in the case when the phases coexist does 
our method also work everywhere; it is, in fact, reduced to the method of 
Ref. 8. ) 

2. T H E  P H A S E  D I A G R A M  

2.1. The  Background  S i tua t ion  of  the  Real Hami l ton ians  

In this section we recapitulate the basic notions of Ref. 2 (see also 
Refs. 7 and 10). We will explain here our basic technique, starting with the 
case of a real Hamiltonian. 
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We consider a configuration space 

X =  S z'  

with S finite, v ~> 2. The Hamiltonian is given as 

H(x) = ~ qS A(X A) (1) 

with translation-invariant interactions CA, diam A ~<r. The models we 
consider are typically the low-temperature ones. We will incorporate the 
inverse temperature into H, i.e., temperature will be one of the parameters 
in the Hamiltonian. 

Given a finite family {x q, q~ Q} of constant configurations ("ground 
states of the unperturbed Hamil tonian ' ) ,  we define the notion of a q-con- 
tour F q in the usual way. (1&7) If all the contours F i of some configuration x 
satisfy the condition either supp F i c  A or supp F~, ~ A C, then considering 
the restriction XA (of X to A), it is useful to write its Hamiltonian as (2'7) 

H(XA)=~ ~(F,)+ ~ eq IAql (2) 
i q e Q  

where q~(F) are suitable translation-invariant "contour Hamiltonians," eq is 
the density of energy of x q, and Aq denotes the set of all t ~ A that are 
either "q-correct" or belong to some supp F q. 

The convenient property of (2) is its additivity: 

H(XAUXA,)=H(XA)+H(XA,) if A m A ' = ~  

We emphasize that H will be written in the form (2) everywhere. No 
Hamiltonians defined with respect to general boundary conditions will be 
used (with one slight exception in Section 3.1). 

A configuration XA is called q-diluted if for any contour F of XA, 
dist((supp F u  int F), A c) ~> 2 and if XA is equal to q on the boundary of A. 
Hence, one has the notion of a diluted partition function 

Zq(A)= ~" exp[  H(XA)J 
all q-diluted XA 

Another "traditional" notion is that of a "crystallic" partition function in 
the volume V(F) = supp Fw int F: 

Z(F) = ~, exp[  - H(xr)] 

where the sum is taken over all configurations Xr on V(F), which can be 
extended to 7/v such that F is a contour of the extended configuration. 
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We will compare Z(F) with the "reference" partition function (called 
"reduced" in Refs. 2 and 7) 

Zre r (F )  = ~ exp  [ - -  H(xr)] 

the sum being taken over all configurations Xr on V(F) that are equal to q 
on supp F and are q-diluted on int F, assuming that F =  F q, i.e., that q is 
the "exterior color" of F. 

The basic notion of a contour functional F(F) is defined from the 
relation 

Z(F) = exp E - F(F)]  Z r e f ( F  ) (3) 

The contour model (more precisely, q-contour model) is then defined 
as a polymer model with partition functions 

i 

the sum being taken over all families of q-contours such that 
dist(supp F~, A c) ~> 2 and dist(supp Fi, supp Fi,) >~ 2. The "activity" kr  is 
given as 

kr= exp[ - F(F)]  

It can be shown that the definition (3) implies the equivalence of both the 
"physical" and the contour ensembles: namely, for any A with simply 
connected components we have 

zq(A ) = exp( - eq I AF) Z ~  

It turns out from this relation that the behavior of external contours of 
q-diluted configurations in A is the same as in the q-contour model. 

The contour models can be studied (under conditions specified below) 
by using the method of cluster expansions (see, e.g., Ref. 7). A reasonable 
assumption guaranteeing "good behavior" of these cluster expansions is 

F(F) >~ r Isupp FI with r large (4) 

for all contours of the given q-contour model. 
In many models of the type (1) possessing only a finite number of 

ground states we have a priori given the analogous condition for O(F), 
called the Peierls (or Gertzik-Pirogov-Sinai) condition(l'7): For all F, 

O(F) >1 r Isupp FI with ~ large (5) 
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This condition will be assumed to hold in the following. It is instructive to 
notice that even in this case, the condition (4) can be violated for some F q. 
This indicates the "nonstability of q," implying in fact that F(F) Isupp F] 1 
is almost zero for a suitably large F q. 

Such contour models cannot be studied by the usual methods of 
cluster expansions and so the notion of a contour model must be sup- 
plemented by further devices. Pirogov and Sinai (j) use the contour models 
with a parameter. Here we use the alternative approach of Ref. 2: 

D e f i n i t i o n .  A contour F q is called stable if 

F(F q) >~ ~ ]supp F] (6) 

A (stable) contour /'q satisfying the condition that even any Fu, 
supp r "q ~ V(F q) is stable is called a small contour. Denote by -Sq  the free 
energy of the "metastable" contour model defined as the polymer model 
with kr~ = e x p [ - F ( F q ) ] ,  ffq small. Write 

hq=eq-Sq, h=min{hq} ,  a q = h u - h  

We say that q is stable if a q  = 0. (See Note 1 below Theorem 1 for the inter- 
pretation of the stability of q). 

Note. There is some "freedom" in the definition of a stable 
(correspondingly, small) contour. In fact, it will be useful to modify this 
definition in Section 2.2 and again in Section 3.1, adapting it to the par- 
ticular problem. Still another definition is used in Ref. 7! The notion of a 
stable q and the value of h is of course unaffected by these modifications, h 
is the free energy. 

Theorem 0. (2) 

(i) Nonstable contours satisfy the inequality 

aq lint F q] >~ �89 ]supp F q] (7) 

In particular, there are no unstable F q for q stable. 

(ii) Zq(A) >~ e x p ( - h  u IAI - C 10ACl) (8) 

(iii) Zq(A) <~ exp( - h  ]A] + C I~AC]) (9) 

where C = C(~) is some constant such that lime ~ ~ C = 0. 

Proof. See Ref. 2. The important preliminary step of the proof is an 
estimate of the polymer partition function zq:  

]log ZqA-- Sq LA][ <~ C ]0A] (10) 
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(or C I~?A~l, which is often a more suitable formulation), where C =  
C(v) -~ 0 as v ~ ~ .  The quantity -Sq denotes the free energy of the contour 
model (see also Ref. 7). 

Such an estimate holds for any polymer model satisfying a condition 
of the type lkrl ~ SIsuppFr with small e. More precisely, the relation (10) 
typically will be used for the polymer partition function --ATqSmall 
corresponding to all possible collections of small contours only [and so 
satisfying the condition (6)]. 

The proof of (ii) follows easily from (10) if we apply it to the right- 
hand side of the obvious inequality 

g q  sma l l  Zq(A) = exp( -eq ]At) Z q ~> exp( -eq  IA]) --A 

The proof of (i) and (iii) is given by induction over the "level" of F, 
resp. A. While the induction step for (i) is a straightforward combination of 
(ii), (iii), and the definition of nonstable contour, the proof of (iii) uses 
some considerations to be repeatedly used later and so we present it here: 
Consider, for brevity, the case Q =  { + ,  - }, h_ = h = h +  - a  with a > 0 .  
Estimate Z+(A): Fix a family of all external large contours (of some con- 
figuration). Given such a family {Fi}, the corresponding partition function 
Z+(A, {Fi}) is smaller than 

exp t - h +  l e x t [ - h  l i n t ] - ~  [qS(Fi)+e+ Isupp F~l] 
t i 

i 

(see Fig. 1); we sum over all diluted configurations in e x t = A \ U i  V(Fi) 
with small contours only. This yields the term e x p ( - h +  lextl + C lextt) by 

eX t 

I 
all diluted confi- 
~Arations with small 

contours only 

A 

Fig. 1 
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(10). Similarly, we sum over all diluted configurations in int = U iint F~ and 
use the inductive assumption (iii) for this sum. 

Summing over all possible {F~}, changing slightly qs, 

05'(F) = 05(F) - C' lsupp FI 

we have 

expl ] , " ,  
{r~} 

We have rewritten the problem such that it fits the following scheme: 

k e m m a  1 ("Model of unstable behavior"; main lemma of Ref. 2; we 
formulate its complex variant, since this also will be used later). Consider a 
model where "configuration" means a collection of mutually external 
contours F, such that dist(V(F,), A C) ~>2 and dist(supp Fi, supp Fr)>~2, 
i r i'. The Hamiltonian is given as 

H{Fi}=alextl+~05(Fi) where e x t = A / ~  ) V(Fi) 
i 

with some complex a, 05(F). Denote by 

Z(A)= ~ exp(-H{F,}) 

where the sum is overall possible choices of {Fi}. Let Re 05(F)>~ ~ Isupp FI 
for all /2 Then for some C =  C(O such that l i m ~  ~o C=O the following 
holds: Consider the polymer model with activities 

kr = e x p [ -  Re 05(F) + 2C Isupp Ff ] 

Denote by - s  its free energy and assume that 

s < R e a  (12) 

Then, for ~ large enough, 

[Z(A)I ~< exp(C [~A"I) (13) 

Notes. 1. By substituting (13) into (11), the proof of (iii) can be 
concluded. To this end, it suffices to check the condition (12) for the 
polymer model with kr = expE - 05'(F) + 2C ]supp F[ ], F large. Actually, it 
can be shown ~2) that s behaves like expE-C"(va ~)v-1], which is surely 

a for large z. 

2. In the general case of Q ~ { + ,  - }, one replaces Lemma 1 by its 
generalization from Section 2 of Ref. 2. 
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Proof  of  Lemrna I. Denote by Z A the partition function of the 
polymer model with the activity kr .  Given any collection of external con- 
tours {Fi} contributing to ZA, "fill in" M =  Ui int Fi by another contour, 
"inserting the term" Z M e x p ( - s  IMI), which is approximately equal to 1. 
Writing ci = Re a and 45 = Re 4, we have the estimate 

[Z(A)I ~< ~ e x p ( - a  [extl)[I  e x p [ - ~ ( F ~ ) ]  
{r,} 

~< ~ e x p ( - a  lextl) 

x 1-[ exp[ - ~(F , ) ]  Z M e x p ( - s  IMI + C laMe1) 
i 

e x p ( - s  IAI) Za 

and CZ~ Isupp F~I > C laMCl; we can also assume that 

<~ 

(notice that s < d 

C > s )  

<~ exp(C I#A~I) 

2.2. A n a l y t i c i t y  of  the  Phase D iagram 

The existence of the phase diagram in the sense of its continuity (more 
precisely, continuity of all strata with respect to the parameters on which 
the Hamiltonian continuously depends) is proved in Refs. 1 and 2 and 
most generally in Ref. 7. It is shown there that the low-temperature phase 
diagram "mimicks" the zero-temperature one, under some general con- 
ditions. Here we are concerned with the proof of the analyticity properties 
of all strata of this phase diagram. 

Let H = H(;L) [given by (2)] depend on some vector real parameter k. 
Denoting by 

Q(k) = {qE Q: q is stable for H(k)} 

we will be interested, for any fixed subset 0 c Q, in the behavior of the 
stratum {k: Q(k )=  Q}. Writing (~ = {q~,..., q,,}, we will assume that ik can 
be written in the form 

k = ( 2  ~ ..... 2" 1, #1,..., #m) 

where n >i- 2 and m >~ 1. 

Note.  The case n -  1 (analyticity of the thermodynamic functions in 
the uniqueness region) is not studied here. (It requires, in fact, only a part 
of the technique developed below. The other part is represented by another 
extremal case, n = IQI-) 

822/47/5-6-9 
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T h e o r e m  1. Let ko be such that either (i) q~Q<=>eq(ko)= 
minq~e{eq(kO) } or (ii) (~= Q(ko). 

Assume the invertibility of the matrix 

~2 ,i ] j =  1,..., n -  1 (14) 

(a variant of the degeneracy-removing condition). Assume the real 
analyticity (and translation invariance) of all the mappings {k-+ ~A(XA)} 
in some neighborhood ~ of ~,o. Assume that for the Hamiltonian H(~,o) the 
Peierls condition (5) holds, with a suitably large ~. Then there is some 
neighborhood ~ of ko and a real analytic function 

{ill = (121 ..... # m )  ~ (/~1 ..... A n - - l ) }  

such that its graph intersects 5 [case (i)] or even contains k o [case (ii)] 
and such that 

{(21(I t) ..... 2"-l(la), #',..., #m)} ~ ,3= {k e 5 : 0  = Q(L)} 

Notes. l. In Ref. 7 a more detailed interpretation of the notion of a 
stable q e Q is given in terms of the existence of a Gibbs state that is a small 
perturbation of the "qth ground state" x q. No other translation-invariant 
Gibbs states exist. (2) 

2. An analogous result can be formulated even when starting from 
the formulation (2). In that case, some additional bounds on (d/dk) qS~(F) 
are needed. 

Proof of  Theorem 1. We consider only case (ii). [In Refs. 1 and 7 it 
is explained how to find in case (i) some k in the vicinity of k 0 such that 
Q ( k ) = Q .  The condition (14) is used there.] We restrict ourselves to the 
special (but characteristic) case when IQI=3  and 1(~1=2. Write Q =  
{ + ,  - ,  0 } and O = { + ,  - } with 0 unstable. We will take ko = 0. The proof 
in the general case is quite analogous, using instead of Lemma 1 its 
generalized version from Ref. 2. 

The idea of the proof is the following. Expecting that 0 will remain 
unstable in some neighborhood of 0, we have to control the "balance" 
between ( + ) and ( - ). Consider a contour F = F + . Writing int F = M + u 
M - ~  M ~ where M + = i n t +  F [union of the ( + )  components of int F] ,  
etc., we have the expression 

Z(F) = exp[ -- q0e(F)] Z + ( M  + ) Z - ( M - )  Z ( M  ~ (15) 

where q~(F) = q~(F) + eq Isupp FI. Hence 

F(F) = 45e(F) + log Z + ( M -  u M ~ - log Z - ( M -  ) -- log Z~  ~ (15') 



Phase Diagrams of Lattice Spin Models 735 

For H = H ( 0 )  this can be written as follows [using (ii) and (iii) of 
Theorem 0]: 

F(F) = 4)(F) + 2 (16) 

with 
A>~ --C Isupp FI, lim C = 0  (17) 

r ~ o o  

One can express A in terms of the contour functionals F(F) and look on 
(16) as an integral equation for F [ignoring the definition (3)]. This is the 
original PS strategy (~) of finding the contour functinals F and we will use it 
with one substantial modification concerning the description of the 
"presumably nonstable" 0 phase. Namely, we will solve (16) as an equation 
for F(F+),  F(F-) only with F(F ~ retaining its "physical value" (3). [-More 
specifically, the quantities F(F~ F ~ small, will be used when expressing the 
partition functions of the "metastable model." The large contours F ~ will 
be handled by the method of Theorem 0, thus avoiding thus any use of 
F(F ~ for them.] We will seek for an analytic solution of (16), with 
"properly" defined A, for any )~. Of course, it will be impossible to retain 
the full equivalence of (15) and (16) if we want (17) to hold at the same 
time, which is needed if we want to have contour models satisfying (6). 

What we will do is to require this equivalence in the particular case 
when the free energies - s +  of the (_+) contour model given by F(F +-) 
satisfy the relation e + -  s+ = e -  s . This will be the "physical" part of 
the "formal" solution (16). 

Let us now elaborate the details of this strategy. Our first task is to 
have a reasonable definition of J for all k �9 3, where ~ is some complex 
neighborhood of 0. Put 

where 

, • - -  + 
-ZJref--A M_ A% (18) 

+ _ _  A~ef-logZ+(M~ ) + h +  ]M~ I 
(19) 

A~t-=logZ-(M-)+h_ IM-i  

and analogously for F - .  The quantity h+ (analogously, h ) is defined as 
h+=e+-s+, where s+=limlAl-llogZ~. [Notice that h+,  A+ are 
expressed as functions of F(F+) . ]  The definition of the quantity A~o is 
slightly more complicated and will be given below. 

By (10), the quantities Ar+er (analogously AM-) satisfy the bounds, for 
each ~, 

IAr+efl ~< C+ ]supp FI (20) 
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where C+ = C + ( r ) ~ 0  as ~--* oo, assuming that F(F +) [analogously, 
F ( F - ) ]  satisfies the condition (e.g.) 

Re F(F) >>. 1~ Isupp FI (21) 

So our task is to define A~uo such that - A ~ o  would satisfy a bound of the 
type (17). Before doing so, notice that if h+ = h  , A~u0 should be equal to 
logZ~176 IM~ [-if (15) and (16) have to be equivalent] and it 
should satisfy the bound 

Re A~o~< Co ]supp F] (22) 

(we cannot expect the two-sided inequality here). Finally, we want an 
analytical dependence of A~o on F(F +- ). 

To find a proper definition of A ~ ,  write the term Z~ ~ in (15) as 
follows [we expressed Z+(A) similarly in the proof of Theorem 0] 

Z~176 (N )Z~176 (23) 
{ri} 

where the summation is over all possible collections of mutually external 
large 0-contours {Fi}, Z sman means summation over all diluted con- 
figurations on e x t = M ~  V(Fi) with small external contours only, and 
N + =  Uiint+ F, etc. Extracting the "bulk" terms from (23), we arrive at 
the following result. 

Definit ion. Put a=ho-h+,  ~+(-F)=dlOe(F)--h + IsuppFt. Define 
(this is an inductive definition for N O r ~ )  

exp(A~o)= ~ Z .... n(ext)exp[h + Lext]_~, ~ : ( F i ) I  
{v~} 

x exp(zl~,§ +A~_ +A%) (24) 

Note. 1. Starting from (23), all the quantities depend on ~.. We will 
not write this dependence, if there is no ambiguity. 

2. A~uo is really an analytical function of F(F § ), F(F ). We will see 
later that there is some arbitrariness in this definition (h+ could be 
replaced by h , for example). 

We will estimate (24) using the method of proof (iii), Theorem 0. This 
requires the applicability of (10) to Z small for all ),. So we have to modify 
the notion of a small F ~ such that the contour F ~ would "remain small" in 
the sense that, say 

Re F(F, ~) >1 �88 Lsupp Vl (25) 

holds for each small F and each ~, e & where ~9 is some neighborhood of 0. 
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D e f i n i t i o n .  Say that a small contour F ~ is n-small if diam F ~ ~<n 
(this is a condition for 0-contours only!). 

The integer n used in this definition will be chosen sufficiently large 
such that the proof of Theorem 0 retains (for k = 0) its validity if the notion 
of n-small contour is imposed instead of the notion of small 0-contour. This 
means that in Lemma 1 we require an inequality sn<an for the 
corresponding quantities s,,, an. It is, however, obvious that s n - s - - +  0 as 
n ~ oo and an > a. So s < a implies also s,, < an for a sufficiently large n, and 
this inequality can be extended to some complex ~ ~ 0. So, we can assume 
that for each k ~ #, 

]sn(k)[ < Re a~(k) (26) 

Returning to (25), we can also guarantee it in some 0 as 

IF(F, O) - F(F, ~,)l ~< Cn (27) 

holds for some Cn such that limN~ ~ Cn = 0 in a suitable 0 ~ 0. 

Note. (27) is a very imprecise bound, but we do not make any 
at tempt to "optimalize the possible radius of 0" in our Theorem 1. Some 
related, more precise bounds will be needed in Section 3.2 (namely 
Lemma 7). 

We emphasize that the notion of an n-small contour [with a suitable n 
guaranteeing (25), (26)] will be used instead of the notion of small contour 
everywhere in the following. 

Proposition 1. With this modified notion of a small contour, (22) 
holds for all k ~ 0 if A is defined by (24). 

Proof. Expand the term Z ~mal~ ( = Z  .. . . . .  n) into the volume and boun- 
dary term as in (10). Then we obtain from (24) the relation 

exp(A~t0 ) = ~ e x p [ - - a  lextl + z~0(ext)] 
{r,} 

x e x p [ -  ~ + ( F i ) I e x p ( A ~ + + A N _ + A ~ )  (28) 

where a = a,~(k), etc., and the summation is over all families of mutually 
external n-large 0-contours F~ in M ~ The term A0 is given as 

Ao(ext) = log zsm~ll(ext) + ho lextl 

(the '"boundary term" of the n-small 0-contour model). 
Investigate first the case N o = ~5 in (24): Write 

45"(F) = Re ~ + ( F )  - ( C ' +  C") Isupp FI 
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where C' is chosen such that C' = C'(z) ~ 0 if z ~ oc and 

C' (~  ,supp Fi,)> ,A~v+, + ,AN , (29) 

[recall that there is no problem with establishing the smallness of 
A+• ic3N+C] 1, since all F(F +) and F(F-) are assumed to satisfy a con- 
dition of the type (21)] and where C" is chosen analogously, such that 

C" (,supp F, + ~ lsupp Fil)>~A o (30) 
i 

[Notice that (supp F +  ~ i  ]supp F i l )>  I~? extol; the smallness of C" follows 
now from (25)!] So we can estimate the right-hand side of (28) as 

<<.exp(C"lsuppFI) ~ exp(-alextl)expI-~i cI)*(F~) ] 
{r ,~  - ( 3 1 )  

~< exp[(C" + C) Isupp F[]  

by Lemma 1. This is, however, the estimate (22). 
Now we are prepared to generalize these estimates to the case when 

N ~ -r ~ in (24). The only difference, however, is that on the right-hand side 
of (28) we have a new term exp A ~  and so instead of (29) the inequality 

C'(~,suppF~l)>A~v++A N + Re AN0 (32) 

is needed. For  C' suitably larger than C " +  C, this surely can be 
established! So we have the proof of the inductive step in (22) (from N o to 
54 ~ with Co = C" + C. 

We summarize what we have shown: 

C o r o l l a r y .  For  any )~e0, where 3 is some complex neighborhood 
of 0, and for any complex contour functionals F(F + ) defined for all con- 
tours F + and satisfying (21), the quantity Re A defined by (19) satisfies the 
estimate (17). 

Proof. Proposition 1, relation (20), and its analogs for A+• 

So we can formulate the question of solving Eq. (16) for any k e ~ ,  
where F is a complex contour functional satisfying (21) for all F + and F 
[and, in general, not connected with the value (3) in any way]. Notice that 
z~ was defined as a function of F(F + ) and F(F-) and it also depends on 
the "physical Hamiltonian" through the values eq and F(F~ F ~ n-small. 
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Denote by cg the set of all functionals F(F + ) satisfying (21). Define a 
metric 

p(F, G) = sup{ IF(F) - G(r)l I v(r)1-1 } 

It is possible to deduce from the expressions (24) and (t9) the following 
estimate: 

Proposition. For any real F, G ~ cg and any ~ ~ 0, k real, 

p(J(F), A(G)) <~ gp(F, G) (33) 

with a small g, lim, ~ ~ g= 0. 

The proof of this statement is based on the following general fact from 
the theory of polymer models. 

I_emma 2. Let kr(2 ) be translation-invariant activities depending 
on some complex parameter 2 such that for all F, 

Ikr()~)] ~< ~lsupp /~l (34) 

d kr(2) ~< e Isupp FI (35) 

with small e. Then for each A, 

d log ZA <~gJAI (36) 

with small g. If we denote by - s  the free energy of the polymer model, then 
also 

d s  ~<g (37) 

Moreover, denoting A = log  ZA +S IA!, we also have 

d 
-~ zl <~glOAI (38) 

Proof o f / e m m a  2. Condition (36) easily follows from the expression 

d d 
log ZA = ~', p(F) -~ kr(;t) 
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where p(1-')=(ZA) 1ZA\supp F, which can be estimated as Ip(F)l~< 
(1 "}-8) IsuppFI. It also immediately implies (37). The relation (38) can be 
proved from the expression of the type 

T c~ A ~ ,2J , T c~ A C # (ZJ 

where kT are given as (see, e.g., Ref. 7 for more details) 

 T=E+[I rj 
J 

the summation being taken over some distinguished families of {Kj} such 
that Ujsupp Fy = T. It is possible to deduce for kT an inequality of the type 
[(d/d2) kT] 4 gITI with small g. Then (38) easily follows. 

Returning to the proof of the proposition, write F~ = F +  K(G -- F) and 
estimate (d/dE)A. The estimates of (d/dE) A ~t+ (d/dK) J r+f nOW immediately 
follow from Lemma 2 [-in a more precise form (38) than actually needed, 
even for complex ~:]. Concerning zl~4o, the estimate [(d/dlr 4 g  IM~ 
(with small g) can be proven by induction, using (24). Namely, for real to, 

where ex'~=M~ and where P(~)  can be interpreted as the 
probability that ~ =  {F~} occurs I-in the ensemble with the partition 
function (28)]. Applying Lemma 2 to the estimates of the first three terms 
of this expression, we have 

if 

d o e g(Iextt ION + ION-I ' d L j ~ o )  ~-xxA~ < ~  e(@) + [+ + 

4 s IM~ 

QED. So we have also (33) (with another g). 
Now we can finish the proof of Theorem 

theorem, we obtain the limit 

F(F, L)= lim Fn(F, Z) 

where 

F,,=F,, ~+A(F,, ,) ( F I = q  5) 

1. By the fixed-point 

(39) 
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for any real ~ ~ ,9. Since we also have the uniform upper bound of the type 

]exp[- - F,,(F)] t ~ exp( - %  Isupp FI) 

and since all the functions F n are obviously holomorphic in k, we conclude 
that the convergence in (39) takes place even for complex k ~ ~9. Moreover, 
F is an analytic function of ~.. So h+(k)=e+_(;~)-s+_(;q is an analytic 
function of k and we can take the analytic manifold 

{XeO:h+(~)=h (k)} (40) 

Now one has to apply some standard implicit function theorem to 
deduce the statement (ii) of Theorem 1. We omit the details of this final 
part of the proof (they can be found in the usual "nonanalytic" 
formulations of the existence of a phase diagram, e.g., in Refs. 1 and 7) and 
notice only that the important fact that (d/dJ.i)(hq-eq)<.e with 
lira . . . .  e = 0  is used here, together with the degeneracy-removing 
condition (14). 

3. Z E R O S  OF D I L U T E D  P A R T I T I O N  F U N C T I O N S  

3.1. Cr i t ical  Vo lumes .  The  Case of  Real Hami l ton ians  

For brevity of the proofs we will impose some simplifying assumptions 
here. Notably, we will consider a special (but characteristic) case Q =  
{ + , - }  with + nonstable. (The general case can be handled by an 
analogous method based on the generalized vers ion--Lemma 2.3 of 
Ref. 2 - -o f  our Lemma 1). 

Though we will continue to use the convenient formulation (2) of the 
problem, in one place (Lemma 6) some additional information about the 
structure of qS(F) will be needed. This will be guaranteed for the models (1) 
and so we will restrict ourselves to models having a formulation (1), for 
simplicity. Thus, a typical model we study is the Ising model with a non- 
zero external field at small temperatures. 

For  technical reasons we will have to impose the following 
modification of the notion of a small contour, to be used everywhere in 
Sections 3.1 and 3.2 (N is again a suitably large integer). 

Defini t ion.  By a stable contour F + we mean a contour F + satisfy- 
ing the relation diam F + ~< N and 

F(F + ) >>. (~/4v) Isupp F+t  (41) 

Note. The constant ~ is from (5) (we assume that our Hamiltonian 
satisfies it). The choice of 1/4v is of course arbitrary, but is related to the 
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choice of 3 in (48). This will impose, requiring the applicability of cluster 
expansion techniques to the "metastable model," a stronger assumption of 
largeness of r than before. 

A contour F q is again called small if supp Fq ~ V(I  ~q) for no unstable 
Fq. This notion will again be f ixed when working in a neighborhood of a 
given Hamiltonian. 

With this modified notion of a small contour, we can rewrite all the 
contents of Section 2.1 with changed numerical constants but with the 
notion of a stable q of course untouched. Write the (new) value of a+ as 
a+=a.  

The strategy of Sections 3.1 and 3.2 is the following. 
Our main resul t--Theorem 2--says, roughly speaking, that for a 

suitable "critical" volume A assigned to any given Hamiltonian (near the 
point of phase transition), a continuation of  the Hamiltonian in a suitable 
complex direction results in vanishing of  the partition function somewhere in 
the vicinity. 

Section 3.1 is devoted to finding such a critical volume, which is 
characterized by the following properties: 

1. Both the "metastable" configurations having small external con- 
tours only and the configurations going to the stable ( - )  state through 
some large ( + )  contour have approximately the same contribution to the 
partition function Z-- (A): 

/+small(/)  = /+ l a rge ( / )  

2. The large contours appearing in the configurations contributing to 
Z larg~ are "really large" in the sense that they encircle more than 3 of the 
volume of A. 

The latter condition will enable us to distinguish clearly between the 
behavior of configurations contributing to Z sman and zlarge: in the former 
case, a typical value of a typical configuration is + (everywhere in A), 
while in the latter case, more than 3 of all sites of any configuration con- 
tributing to Z ~aree are in the - regime. 

In Section 3.2 we will show the following: if we change the specific 
energy (relative t o - )  of + by the value rcilAL a, then the quantity 
z+sman(A) Z (A) -1 roughly speaking multiplies itself by e x p ( - T c i ) = - 1 ,  
while z~rge(A)Z_(A)  ~ changes much less significantly. Elaborating this 
mechanism slightly further, we obtain that Z+m~H= --Zlarge--+ for a suitable 
complex field of the approximate intensity 21 n i ]A I-~. Therefore, Z+ (A )=  0. 

Let us go back to the contents of the present subsection. Our construc- 
tion of the set A will be based on the idea of a "critical size" of a + con- 
tour: This notion will be defined for small a >  0 (which is the restriction 
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used everywhere in the following; "almost stability" of + ). Below the 
critical size, contours are "undesirable" and one has to pay a great amount 
of work to install them. [This amount is measured by F(f '+) . ]  Above the 
critical size, the situation is just the opposite, for suitably shaped contours 
[the fact that F(f  "+) drops almost to zero indicates it]. 

Closely related to the notion of a critical size are the following notions 
of "the best possible shape of a contour" and the "minimal possible energy" 
of a contour (given the cardinality of the volume it encircles). 

Notation. Denote by V*(F)=suppFuint_ F (for F = f ' + ) .  [In 
fact, this notion is much more important and natural than the conventional 
V(F). This is true for all considerations of the PS theory!] 

Def in i t ion.  

Denote by 

Denote by f(F) the quantity 

~=  lim inf f(F) 
n ~  oo F : I V * ( F ) I = n  

{Typically, p[ V*(F)] (1 -v)/,.[ behaves like [supp F[ }. 

Definition. Say that a convex subset M of the Euclidean space ~v 
is an optimal shape of the given Hamiltonian if the following holds: There 
is some C > 0  and some r/~>0 such that l i m K ~  r/~=0 and such that for 
each ;c > 0 there is some contour r K satisfying the following assumptions: 

(i) V*(T~)cKM. 

(ii) dist(t, KM c) ~< C for each t ~ •M\ V(P~). 

(iii) -~- ;/~ ~< -~(P~) ~< -~ + ,~. 

Note. The optimal shape of the Ising model is obviously square. We 
expect that all the models of Section 2.1 have an optimal shape, possibly 
with somehow relaxed condition (ii). [The only property of C in (ii) that 
will be needed is l im~oo(C~ 1)=0.]  We also expect that the optimal 
shape can be taken such that it respects the symmetries of the Hamiltonian 
(such as 90 ~ rotation in Z ~, which is a symmetry present in many concrete 
Hamiltonians). We do not have proofs of these facts! 

Assumption 1. In the following, we study only models having an 
optimal shape. 

As a preliminary step of our constructions, we present here some well- 
known estimates of the number of lattice points in a given convex set. 
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L e m m a  3. Let M m  R v be convex. Denote by Vol(M) its volume. 
Denote, for any given t e N ,  by 07 (M ) the set {t~Zv: dist(t ,M)<.r& 
dist(t, M c) ~< r}. Then: 

(i) (VoI~cM) -1 [Mc~Z ~] ~ 1  as ~c~oo. 

(ii) (Vol~cM) I ]O7(~cM)] ~ 0  as tc--,oo. 

Next, we will give the definition of contours of the "critical size." 
Roughly speaking, these will be defined as "optimally shaped" contours F + 
satisfying the approximate relation f(F) - f, such that ~(F)  and aV*(F) 
are approximately the same. l i t  will turn out that V*(F) - (~a ~)v for 
these contours.] 

In the following lemmas, it will be convenient to consider a > 0 as a 
parameter formally not connected with the definition of the quantities 
~(F). (See the Note below!) 

I . emma  4. There is some C > 0 such that for each ~ > 0, each # > 0, 
and each sufficiently small a > 0 ,  there is a contour F ,  satisfying the 
following properties. 

(i) V*(F~)cI~2M, where 2 = ( @  ~)(VolM) 1/v. 

(ii) [ f (F~) -  el ~< ~. 

(iii) dist(t, (#2M)") 4 C for each t ~ #2M\ V(F~). 

(iv) [V*(F~)] =(~#)v(@-l)v, with ~ 1 as #2--, oo. 

(v) q~(F~)=~'~ ~aV*(F~)with I~'- l]~<q/f.  

Proof. Notice first that 

Vol(#2M) = #v(~ca- 1)v (42) 

Taking ~c=#2 in the preceding definition and choosing an appropriate 
r~ = F , ,  we have immediately (i)-(iii). To obtain (iv) it suffices to combine 
Lemma 3 with (42). Finally, (v) follows from (iv) and (ii). 

Note. In the formulation of the lemma, a > 0  stands like some 
arbitrary parameter not dependent on the energies ~(F). In fact, the 
situation in which it will be applied is different, since a depends on ~(F). 
So, in fact we need a strengthened version of the lemma. So we impose: 

A s s u m p t i o n  2. The class of Hamiltonians we study [with eq and 
~(F)  depending on some parameters] is such that the estimates of 
Lemma 4 hold uniformly for all the Hamiltonians, assuming only that the 
optimal shape M is chosen such that Vol (M)= 1. 

Since the optimal shape of the Ising model with an external field is still 
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square, Assumption 2 is satisfied in this particular case. Again, we expect 
that this assumption is not at all restrictive in usual situations! 

Now we can find the "critical set" A with the properties 1 and 2 stated 
in the introduction to this subsection. We will show that it is possible to 
find a set A satisfying 1 somewhere "between" 3(1 + e ) 2 M  and (1 + e)2M. 
Before doing this, we will show in Lemma 5 and Corollary 1 that any A 
"between" 3(1 + e ) 2 M  and (1 + e ) 2 M  satisfies the property 2. This will be 
quite a direct consequence of the very notion of an optimal shape: 

L e m m a  5. There is some { > 1 such that { -+ 1 if r --+ c~, a ~ 0, and 
such that for any contour F =  F + satisfying the property 

V*(F)<~q('ga 1)~, q~<l (43) 

the estimate 

r ( v )  >>. (1 - ~ q > )  r (44) 

is valid. 

Proof. By (3) and by the expression (10) of diluted partition 
functions we have the estimate 

F(F)  = qS(F) + log Z + ( i n t _  F ) - l o g  Z (int_ F) 

>~ q S ( F ) - a  I g * ( v ) l -  c [supp FI 

Choosing some c~ > q, we can write this as 

F(F) >>. (1 - O~/v) ~b(F) - C [supp FI + gI~/~(F) - a I V*(F)I 

Because C --+ 0 as ~ --+ 0% we can write this further as 

F(F)  >~ (1 - c71#') ~ ( F )  + ~1/~r -- a I V*(F)] 

with a suitable ~ < 0 such that q(q) 1 __+ 1 as "( ---+ O0. NOW, 

~(V) > (~ -  ~) i V*(V)/(v- 1)/v 

and therefore 

~ l / v ~ ( F '  ) --  a g , ( / ~ )  ~ [ -V,( /F,)]  (v 1)/v 1-(.~_ 17 ) ~]l/v_ 

Following the assumption (43), the last 
( '~-~/) ~I/v > q'L | 

a ] V*(ir~)] l/v] 

bracket is ~>0 if 
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Corollary 1. Assuming that r is sufficiently large, e and a are 
sufficiently small, any contour F satisfying the inequality 

is a small contour. 

Proof. This follows from Lemma 5 and the inequality 

1 - ~ [ � 8 8  + ~ )3  l"  > 1/4v 

Recall that z+'a"(A) denotes the partition function corresponding to 
all diluted configurations with small external + contours only. Denote by 
z l ~ r g e ( A  ) = Z + (A) - z + m a l l ( A  ). 

Note. Corollary 1 says that z l ~ r g e ( A ) : 0  for the set A =  
V*(F3{~ +~)/4). Later we will show that z~rge(A) "overgrows" the quantity 

small Z+ (A) for A = V*(F~+~). So, as we have noted before, we need to con- 
trol the growth of Z+ mall and _+7 large with A: 

L e m m a  6. There is some C =  C(z) such that l im~oo C =  0, some 
~ > 0  [depending on the Hamiltonian (1); "~ is typically a large quantity] 
such that: 

(i) IlogZ+ma"(A)--logZ+m~l'(A')--e+ ]A A A'I[<~C [A A A'I. 

(ii) IlogZ+(A)--IogZ+(A')J<<,{JA /~ A'[. 

Proof. Condition (i) is a common, inequality from the theory of 
cluster expansions of polymer models, assuming that we write it as 

l log Z A - log Z A,I <<- C I A A A'[ 

where Z A is the polymer partition function of the contour model with small 
contours only. 

Concerning (ii), it suffices to prove it for A ' =  A w {t}. Take a map- 
ping {XA,~ XA} which changes the configuration XA' "locally" (up to the 
distance r + 2 from t) such that dist(supp F, t) ~> 2 for any contour P of XA. 
The number of preimages of any xA is uniformly bounded by some con- 
stant depending on the range of interactions r and also on the number of 
"spins" ISI. Further, for any xA, we have the obvious inequality [see (1)!] 

I H ( x ~ , )  - H ( x , , ) l  ~< 

where xA is the image of XA, and ~ is some constant. So we have (with 
another "~) the inequality (ii). 

It implies also the inequality (and this will be used later) 

IlogZ~rg~(A)-logZ+(A')[ <~ ~ IA A A'J (45) 
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assuming e.g., that z~rge(A)>Z+mall(A). This is easily obtained (with a 
new ?) from the relation z ~ r g e ( A ) = Z + ( A ) -  z+mall(A) and (ii). 

Note. This is the only point in the paper 2 where the abstract for- 
mulation (2) should be supplemented by additional information about the 
structure of q~(F). Relation (1) gives such information. 

Corollary 2. Assume that ~ is sufficiently large. Assume that a > 0  
is sufficiently small. Then there is some A satisfying the following 
inclusions, with suitably small e, g: 

V*(F3(1 + e)/4) ~ A c V*(F~ +~) (46) 

(see Lemma 4 for the definition of F~). 

Moreover, A can be chosen such that 

0 ~> log small Z+ (A)-logZ~g~(A)>~-f (47) 

and any large contour F in A satisfies the relation 

V*(F) >~ 3IA ] (48) 

Proof. We have noted that zl~rge(A ') = 0  for m ' =  V*(F3( I +e)/4). In 
the following we will show that 

ZI~gr > zs+mall(A '') (49) 

for A " =  V*(FI+~)w O(V*(Ft+~))c. Then, by adding successively points 
from A"\A' to A' we obtain, by Lemma 6, (i) and by (45), the existence of 
a desired set A satisfying (46) and (47). Finally, we will deduce from 
Corollary 1 that any A satisfying (46) and any large F from A satisfy (48). 

To prove (49), compare log Z~rg~(A ") with l o g 7  small_+ . The former 
expression is larger than 

- ~ e ( F l + ~ ) + l o g Z  (int F~+~)-e+ [A"-V*(F~+~)I 

and so (if we take A ' =  V*(FI+~)) 

log z~gr (A " ) - log z+small (A)" 

~> --q~(Fl +~) + a IA"[ - C ]supp F 1 +~] 

> --(~O~(V 1 +g) -{- a [A"] 

[-by Theorem 0, (ii) and (iii); notice that q = - is stable!], where co > 1 can 
be chosen such that l i m ~  ~ ~o = 1. By Lemma 4, (v) this is >~0 for large r. 

2 Another point is the proof of completeness. ~2~ 
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This proves (47). By Corollary 1, for any large F we have V*(F)> 
3(1 + e)(fa - ~)u, but (1 + e)(fa ~ )~ ~> I A"] >~ I V* (F~ + ~)l (for a suitable g > 0) 
because of Lemma 4, (iv). So (1 +e)(~a 1)~> IAI and V*(F)~>3I/I. This 
completes the proof of Corollary 2. 

3.2. The Case o f  Complex  Hamil tonians  

Assume now that the real Hamiltonian H, for which all the 
preparatory constructions of Section 3.1 (notably, Corollary 2) have been 
done, is a particular value H(0) = H of a family of complex Hamiltonians 
{H(2),2E0},  where 0 is some complex neighborhood of zero. More 
specifically, we will assume that the quantities eq()~) and 45(/', 2) change 
linearly in 2 as follows, with real gq and ~(F):  

e~(;~) = e~ + ~ ,  ~ ( r ,  ~) = ~ ( r )  + ~ ( r )  (50) 

where the quantities gq (recall that Q = { + ,  - }) and ~(F)  satisfy 

g + - g  = 1  (51) 

and some bound of the type 

I~(r)l ~<K ]supp FI (52) 

with K to be specified later. 

Note. Condition (52) implies another bound, 

d 
~--~exp[-qs(F, 2)] ~<exp(-~'  Isupp FI) (52') 

with a large r' (assuming that K is not too large). This more general bound 
is used in Ref. 7, but here it would complicate our estimates, so we do not 
use it. 

From now on, take the set A as specified in Corollary 2. As in 
Section 2, our strategy is to f i x  the notion of a small contour when defining 
the partition functions Z ~ " ( A ,  2), etc., for the complex Hamiltonian H(2). 
(This will require a guarantee of the applicability of cluster expansions to 
zsm~HtA 2)---see Lemma 7). 

Consider the analytic functions 

f (2)  = z+m~ll(A, 2), g(2) = zI+rg~(A, 2) 

Put 

~p(2) = log f (2 )  - log g(s 
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Statement (47) also can be formulated as follows: 

0>~q~(0)~>-~ ( w i t h a n e w ~ )  

We will show that (p(2)= - i~ ,  i.e., f ( 2 ) =  - g ( 2 )  for a suitable 2: 

(53) 

T h e o r e m  2. Assume that a > 0  is sufficiently small, z sufficiently 
large, and K not too large (to be specified later). Then there is some 2 ~ C 
such that 

IRe 21 ~<2f IA1-1 (54) 

IIm 2-~z IAI iI <~2 IA] 1 (55) 

such that q~(2)= irr [i.e., such that Z+(A, 2 ) = 0 ] .  (~ is from (53)). 

Note. Consider the case of the Ising model with a positive external 
field �89 Then a behaves like //2 where // is the inverse temperature. The 
bounds (55) resp. (54) are of the order 2 V resp. //2 v because both ~ and 
are proportional to the inverse temperature. 

The proof of Theorem 2 will be divided into two steps. In the second 
step we will find a real Hamiltonian H()~o) satisfying (54) and the relation 

e(&)=o (56) 

[This is a suitable sharpening of (47) only]. 
In the first step of the proof we will show that assuming (56) for 

2o=0,  we can find some H(2) satisfying q~(2)=-ire such that 
12+~i IAl-ll  < 2  IAI 1. This is the more characteristic part of the proof 
and some of the techniques developed here will be used also in the second 
step. 

As a preparation, we need a lemma, which gives a suitable sharpening 
of (27). 

k e m m a  7. Let 2, 2 o be complex parameters such that the inequality 
(e.g.) 

Re F(F, ~)~> (~/5v)]supp F] (57) 

holds for each small F =  F + and each ~ from the interval [2o, 2]. Then 

Re F(F, 2)~> Re F(F, 2 0 ) - 2  12-).ol l V * ( F ) I - K 1 2 - 2 o l  Isupp FI (58) 

where K is taken from (52). 

822/4715-6-10 
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ProoL From the definition (3) we have 

F(F, 2)=q~(F, 2)+logZ+(int_ F, 2)- logZ_(int  F, 2) (59) 

and so we have to estimate how the terms on the right-hand side of this 
relation change with 2. 

The estimate of rb(F, 2) follows immediately from (52): 

d 
~(F,  2) = ~ (F)  ~> - K  ]supp F[ (60) 

Concerning Z+(int  F, 2) and Z (int F, 2), we will estimate them at the 
same time as F(F, 2). Namely, we will prove the following estimates (q = + 
or - ): 

d [ l o g Z q ( M ,  2)--eq(2)VMt] ~<r/lM] (61) 

together with the estimate [which is a stronger version of (58)] 

d F(F, 2) ~< (1 + 2r/) I V*(F)I + K Isupp FI (62) 

where ~/= ~/(K, r) is such that l i m ~  oo q =0.  It is obvious that (61) and 
(60) substituted into (59) yield (62). To show that also (62) implies (61), 
consider the expression 

Zo(M, 2) = exp[eq(2) IMI ] Z%(2) (63) 

where Zqt(2) is the polymer partition function corresponding to all (small) 
F q and the activity kr~=exp[--F(F q, 2)]. Expressing further 
(d/d2) log Z~t(2 ) as 

d 
dd2 log z q ( 2 )  = ~ p ( F  q) -~ exp[ - F ( F  q, 2)] 

p(Vq)=ZSxs.ppA2)[z ,(2)] ' 

and noticing that 

exp[ - F ( F  q, 2)] ~< e x p [ ( - r / 5 v  + ~) Isupp FI ], e small 

we obtain (61) from (62), which concludes the inductive proof of these 
relations, and also the proof of (58). 

Now we can go to the proof of Theorem 2. We will study the quan- 
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tities f(2) and g(2) and the relation between them. Investigate first f(2) by 
expressing it as follows: 

7=m=~qA 2)=exp[--h+(2)IA] +A(2)] f ( , i ) = _ +  ,._, 

= exp[-h()~)IAI] exp[ -a (2 ) I11]  exp[A(2)] (64) 

where IA(2)t ~glOAI, g+O, for r ~  oo. Moreover, by (38), IA(2)-A] ~< 
12l IOAI where g ~  0 for z ~ oo. Therefore, the leading term in 

~7(2) = f(2) exp [h(2) I A[ ] 

is exp[-a(2)]AI ] because A(2) can be "neglected" for large IA] (i.e., for 
small a > 0). 

On the other hand, the term 

~(2) = g(2) exp[h(2) IAI ] 

has a different behavior. It changes itself much more slowly: Investigate 
[the summation is over all systems {Fi} of large + contours in A with 
disjoint V*(F~), ext = A\U~ V*(F~)] 

g(2)= ~ exp [ -  ~ Cbe(F ,, 2) 1/+man(ext) U Z-( int  F~) 
{ F ' , }  " i 

= ~ e x p l -  ~(F i ,  2)-h+()O,ext,+h(2),A\ext,+A()t)] (65) 
(r5 

Write it as 

where 

g(2) = ~(o) E ( ~ O ~ u ~ )  

~e = exp [ -  ~ ~( r , ,  2) + @(r,)] 

02 =exp{ - [a(2)-- a] ]extl } 

r/e = exp [z~()o) - A] 

and the expectation is taken with respect to the probability 

P(~)  = exp [ - -  ~ ~(Fi)-a ,ext, + z]] g(0) 1 

assigned to any system of large contours ~ = {Fi}. 

(66) 
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We will show that for any 2 from the disk L2 IA[-~i [  ~<2, 

[log ~(2) ~(0)-~E = [log E ( ~ 0 ~ t l ~ ) [  ~< 3/2 (67) 

(for the special value of 2=zcijA[ ~ we will need a more precise 
inequality). 

Consider first the "most important" quantity 0~. Since [ext[ ~<�88 
and a(2)[e+(2)-e (2)]-1--* 1 for z--* ~ ,  we may assume that 

] a (2 ) - a ]  ]extl ~<~[A] l a ( 2 ) - a l  <<.�88 

where C(r) --* 1 as ~ --* oe. Notice that 

e + ( 2 ) - e  ( 2 ) - e + + e _ = 2 ( Y + - Y ) = 2  

So 

0~ = exp(�88 [A[) (68) 

where [Re 0[ .-..." C(z), IIm 0[ ~< C'(r) and where C(z) and (~(r) can be chosen 
such that l i m ~  ~ C ( r ) =  1 and lim~ ~ o~ C(z)=  0. 

Concerning the quantity ~ ,  we use the following consideration. For 
large A, ]0A[ is very small compared to [A[ (because A has an 
"optimal shape") and so a "typical value" [counted in P ( ~ ) ]  of 
Z [supp Fi[ is also very small compared to IA[. More precisely, we have 

E ( ~  - 1) 2 --* 0 (69) 

i f a ~ 0  (uniformly in [2 [AJ--~zi[ ~<2). 
A similar consideration can be applied to r/~. The novel point here is 

that we have no a priori estimate (52). An analogical inequality 

15(2) - A(2o)[ ~ C 12 - 2o[ ~, Isupp FF~[[ (70) 
i 

can be proved, however, as we explained in (38). 
Thus, we have also 

E ( r / ~ -  1)z ~ 0 for a--+0 (71) 

Finally, taking into account (71), (69), and (68), we obtain, for 
sufficiently large t and sufficiently small a, the inequalities 

and 

i4_  ) 
(73) 
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with some real ~, ~, and ~ converging to 1 for z --+ c~ and a -* O. Consider 
the quantity 

m = min {f(x, y); x 2 + y2 ~< 4} 

where f i x ,  y ) = e x p ( - x / 4 ) c o s [ ( , c +  y)/4].  We have the simple estimate 
m > m', where 

m ' = m i n { f ( x ,  y);x~>0, 2 >  y>~0, x +  y~<2 x ~ }  

= exp ( - - ~ )  cos ( - ~ )  > exp ( -  ~)  

So we obtain from (72) the inequality 

Re E ( ~  02 q~) > exp( - 1.5) 

for any sufficiently large z and any sufficiently small a. This 
complemented by another set of numerical bounds 

[Im E(~20~/~)I  < 1.5 

and 

[ E ( ~ 0 ~ , / ~ ) -  II < 2.2 

(74) 

can be 

and 

Re ~(2a) ~(0) -1 > 2 (1/2) - -  g 

This implies (with another e) that 

IRe log o~(2a) g(0)  -1  ] ~ 0.35 + e 

and 

IIm log ~(2a) oa(0)-l[ < 1 

(76) 

(75) 

which are obtained in an analogous way, estimating the functions 
e x p ( - x / 4 )  sin((~ + y)/4) resp. e x p ( - x / 4  + i(rc + y ) / 4 ) -  1 on the disk 
x2+  y 2 <  4. All these bounds hold for [2 [ A [ -  rti[ ~< 2 and they finally give 
(67) after some computations (namely, Re z~>exp(-1 .5)  together with 
[Ira z[ ~< 1.5 and [z - 1[ < 2.2 implies that [log z[ ~ 1.5). 

For 2 almost equal to z~i]A[ 1 a more precise inequality can be 
obtained: Let 2a= i [A]  1(re-6)  with - 1 ~ < ~ < 1 .  Then (for a suitable 
e > 0 such that lim . . . . . .  0 e = 0) 



754 Zahradnik 

Compare now these inequalities with (64). Because a = a ( 2 ) =  
e + ( Z ) - e  (2) + g= Z + g with some g< 2 (see (37)) we have 

)7(2) = )7(0) e x p ( ( - 2  - ~) IA[) (77) 

(with another g). 
Consider the function (rescaled ~0) 

q5(2) = log f(). I A [ - 1 ) - l o g  g(2 ]A[-1) +~zi 

= log)7(2 I A [ - 1 ) - l o g  ~(2 ]A1-1) + ~zi 

Recall that we want to solve the equation ~b(2)=0. An immediate 
consequence of (67) and (77) is the inequality 

I~b(2)[ ~>2-  1.5-Igl  

which holds on the circle 12-~i l  = 2. On the other hand, by (76) and (77) 
we have for some - 1 ~< 5 ~< 1 the estimate 

1~[(7c-~5)i]t ~ 0.35 + e + Igl. 

This means, however, that ~bE(Tz-6)i]-t>max{l~b(Z)l -1, 12-rcil~<2} 
and so the function q3(Z) 1 cannot be holomorphic. In other words, the 
equation ~b(2)=0 must have solution in the disk 12-~i1~<2. This 
concludes the first step of the proof of Theorem 2. 

It remains to be shown that there is some real 20 such that (56) holds. 
This can be easily shown by modifying the estimates of)7 and ~ given 
above. Instead of (68) we have for any real 2 > 0 the estimate 

,0~[ ~<exp I ( ~ + ~  ) ,All,  ~<~)~ 

Substituting this into (66) (together with (69) and (71)) we have, with 
another e < 2, the estimate 

~(2) ~< ~(0)exp [ ( ~ +  ~ ) I A I ]  (78) 

So, if we combine it with (77), 

7(2) ~(~)--1 ~ exp[( -- 32 -- e -- [gl) I11] )7(0) ~(0) ' 

Recalling that )7(0) l~(0)<exp('~) we surely get, for some 0 > 2  o > 
- 2  [A[ 1 log "~, the desired solution of the equation 

7 ( & )  = g (&)  

which completes the proof of Theorem 2. 
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